Titanium Tetrachloride-Induced Three-Component Coupling Reaction of α-Haloacylsilane, Allylsilane, and Carbonyl Compound

Yoshihiro Horiuchi, Koichiro Oshima,* and Kiitiro Utimoto*

Department of Material Chemistry, Faculty of Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-01, Japan

Received February 5, 1996

There has been considerable interest in the chemistry of acylsilanes¹ and many procedures have been developed for the preparation of many functionalized acylsilanes.² Only a few reports, however, have been published for the synthesis of α -haloacylsilanes.³ Recently we have reported a facile approach to α -haloacylsilanes based on the rearrangement of α -haloepoxysilane and their use for triethylborane-mediated Reformatsky type reaction giving β -hydroxyacylsilane.⁴ Here we describe another application of α -haloacylsilanes to organic synthesis. Treatment of an α -chloroacylsilane with titanium tetrachloride in the presence of allylsilane⁵ afforded a β , γ unsaturated ketone⁶ or α -silyl- β' , γ' -unsaturated ketone⁷ in good yield.

Treatment of a dichloromethane solution of α -chloroacylsilane **1a** (R' = Me, 0.23 g, 1.0 mmol) and allyltrimethylsilane (0.16 mL, 1.0 mmol) with titanium tetrachloride⁸ (1.0 M dichloromethane solution, 2.0 mL, 2.0

(1) (a) Page, P. C. B.; Klair, S. S.; Rosenthal, S. Chem. Soc. Rev.
 1990, 19, 147–195. (b) Ricci, A.; Degl'Innocenti, A. Synthesis 1989, 647. (c) Cirillio, P. F.; Panek, J. S. Org. Prep. Proc. Int. 1992, 24, 553.
 (2) Preparation: (a) Miller, J. A.; Zweifel, G. Synthesis 1981, 288.

(2) Preparation: (a) Miller, J. A.; Zweifel, G. Synthesis 1981. 288.
(b) Mandai, T.; Yamaguchi, M.; Nakayama, Y.; Otera, J.; Kawada, M. Tetrahedron Lett. 1985, 26, 2675. (c) Ireland, R. E.; Norbeck, D. W. J. Org. Chem. 1985, 50, 2198. (d) Brook, A. G.; Duff, J. M.; Jones, P. F.; Davis, N. R. J. Am. Chem. Soc. 1967, 89, 4431. (e) Corey, E. J.; Seebach, D.; Freedman, R. Ibid. 1967, 89, 434. (f) Soderquist, J. A. Org. Synth. 1989, 68, 25. Reaction: (g) Danheiser, R. L.; Fink, D. M. Tetrahedron Lett. 1985, 26, 2509. Idem. Ibid. 1985, 26, 2513. (h) Nakajima, T.; Segi, M.; Mituoka, T.; Honda, M.; Naitou, K. Ibid. 1995, 36, 1667. (i) Kuwajima, I.; Kato, M. J. Chem. Soc., Chem. Commun. 1979, 708. (j) Reich, H. J.; Rusek, J. J.; Olson, R. E. J. Am. Chem. Soc. 1979, 101, 2225. (k) Kuwajima, I.; Matsutani, T.; Enda, J. Tetrahedron Lett. 1984, 25, 5307. (l) Ager, D. J. Chem. Soc. Rev. 1982, 11, 493.

M.; Mituoka, T.; Honda, M.; Naitou, K. *Ibid.* 1995, *36*, 1667. (i)
Kuwajima, I.; Kato, M. J. Chem. Soc., Chem. Commun. 1979, 708. (j)
Reich, H. J.; Rusek, J. J.; Olson, R. E. J. Am. Chem. Soc. 1979, *101*, 2225. (k)
Kuwajima, I.; Matsutani, T.; Enda, J. Tetrahedron Lett. 1984, *25*, 5307. (l)
Ager, D. J. Chem. Soc. Rev. 1982, *11*, 493. (3) (a)
Kuwajima, I.; Abe, T.; Minami, N. Chem. Lett. 1976, 993. (b)
Nowick, J. S.; Danheiser, R. L. J. Org. Chem. 1989, *54*, 2798. (c) Page, P. C. B.; Rosenthal, S. Tetrahedron Lett. 1986, *27*, 5421. Idem Tetrahedron 1990, *46*, 2573. (d)
Hewkin, C. T.; Jackson, R. F. W. J. Chem. Soc., Perkin Trans 1 1991, 3103. (e)
Kuwajima, I.; Matsumoto, K.; Inoue, T. Chem. Lett. 1979, *94*. (g)
Kuwajima, I.; Matsumoto, K.; Sugahara, S. *Ibid.* 1980, 525.

(4) (a) Horiuchi, Y.; Taniguchi, M.; Oshima, K.; Utimoto, K. *Tetrahedron Lett.* **1995**, *36*, 5353. (b) Morihata, K.; Horiuchi, Y.; Taniguchi, M.; Oshima, K.; Utimoto, K. *Ibid.* **1995**, *36*, 5555.

(5) Allylation with allylmetals: (a) Yanagisawa, A.; Habaue, S.; Yamamoto, H. J. Org. Chem. **1989**, 54, 5198. (b) Sato, T.; Matsumoto, K.; Abe, T.; Kuwajima, I. Bull. Chem. Soc. Jpn. **1984**, 57, 2167. (c) Yamamoto, Y.; Asao, N. Chem. Rev. **1993**, 93, 2207. (d) Yanagisawa, A.; Habaue, S.; Yamamoto, H. Tetrahedron **1992**, 48, 1969.

(6) (a) Brown, H. C.; Soundararajan, R. *Tetrahedron Lett.* **1994**, 35, 6963. (b) Takeuchi, S.; Ohira, A.; Miyoshi, N.; Mashio, H.; Ohgo, Y. *Tetrahedron Asymmetry* **1994**, *5*, 1763. (c) Yasui, K.; Fugami, K.; Tanaka, S.; Tamaru, Y. J. Org. Chem. **1995**, *60*, 1365.

(7) (a) Obayashi, M.; Utimoto, K.; Nozaki, H. Bull. Chem. Soc. Jpn.
1979, 52, 2646. (b) Misra, R. N.; Withers, G. P.; Hudrlik, A. M.; Rona, R. J.; Arcoleo, J. P. Tetrahedron Lett. 1976, 1453. (c) Larson, G. L; Hernandez, D.; de Lopez-Cepero, I. M.; Torres, L. E. J. Org. Chem.
1985, 50, 5260. (d) Corey, E. J.; Rücker, C. Tetrahedron Lett. 1984, 25, 4345. (e) Yamamoto, Y.; Ohdori, K.; Nakatani, M.; Akiba, K. Chem. Lett. 1984, 1967. (f) Fürstner, A.; Kollegger, G.; Weidmann, H. J. Organomet. Chem. 1991, 414, 295.

(8) The use of BF_3 ·OEt₂ and TMSOTf as Lewis acids resulted in a recovery of **1a**, and no allylation product was detected in the reaction mixture.

mmol)at -78 °C for 30 min gave 1-undecen-4-one **2** (0.16 g) in 98% yield. The use of α -chloroacylsilane **1b** (R' = Ph) in place of **1a** also gave **2** in 76% yield, while **1c** (R' = *t*-Bu) afforded 5-(*tert*-butyldimethylsilyl)-1-undecen-4-one (**3a**) (0.22 g)⁹ in 78% yield upon treatment with TiCl₄ in the presence of allyltrimethylsilane (Scheme 1). Whereas the trimethylsilyl and dimethylphenylsilyl groups of the acylsilane moiety have been lost completely under the reaction conditions, the *tert*-butyldimethylsilyl group remained on the products.

The partial isomerization of the product **2** into the α , β unsaturated ketone took place after prolonged stirring of the reaction mixture at -78 °C. For instance, stirring a mixture of **1a**, titanium tetrachloride, and allyltrimethylsilane at -78 °C for 3 h provided 2-undecen-4one (25%) in addition to **2** (73%). Coexistence of α -halogen with acylsilane moiety was essential for the formation of β , γ -unsaturated ketone. In fact, treatment of acylsilane (*n*-C₆H₁₃CH₂C(O)SiMe₂Ph) or α -chloroaldehyde (*n*-C₅H₁₁CHClCHO) with TiCl₄ in the presence of allyltrimethylsilane afforded homoallylic alcohol (*n*-C₆H₁₃CH₂C-(OH)SiMe₂PhCH₂CH=CH₂) or chlorohydrin (*n*-C₅H₁₁-CHClCH(OH)CH₂CH=CH₂) in 85% or 95% yield, respectively.¹⁰

Crotyldimethylphenylsilane, cinnamyldimethylphenylsilane, methallyldimethylphenylsilane, and prenyldimethylphenylsilane reacted at the γ -position exclusively to provide the corresponding α -(*tert*-butyldimethylsilyl)- β',γ' -unsaturated ketones **3b**, **3c**, **3d**, **3e** in 52%, 50%, 66%, and 33% yields, respectively upon treatment with TiCl₄ in the presence of **1c** (Scheme 2). The reaction of **1c** with 2,4-pentadienyldimethylphenylsilane afforded 7-(*tert*-butyldimethylsilyl)-1,3-tridecadien-6-one (**3f**) exclusively in 63% yield.¹¹

On the basis of these findings, we are tempted to assume the following reaction mechanism (Scheme 3). The chloro substituent coordinates titanium to give a carbonium ion¹² at the α position of the acylsilane which is stabilized by a silicon atom. Participation of silicon atom might produce a cationic intermediate **4** in which the silicon bridges^{13–15} both the carbonyl carbon and the neighboring carbon atom. Nucleophilic attack of allyl-

(14) The possibility of ketene formation was suggested by a reviewer. The reaction of α -chloroacylsilane **1c** with TiCl₄ in the presence of PhCH=N-*n*-Pr did not give any lactam. Thus we assume that ketene is not an intermediate. In contrast, the reaction with a fluoride source might proceed via ketene intermediate, since treatment of α -chloroacylsilane with *n*-Bu₄NF in the presence of alcohol (R'OH) afforded ester RCH₂COOR' in 76% (R' = PhCH₂) or 75% (R' = CH₂=CHCH₂) yield.

(15) The following crossover experiment was performed. Treatment of a 1:1 mixture of **1** (R = n- C_3H_7 , R' = t-Bu) and **1b** (R = n- C_6H_{13} , R' = Ph) with TiCl₄ in the presence of allyltrimethylsilane provided only two products, n- C_3H_7 CH(SiMe₂-t-Bu)COCH₂CH=CH₂ and n- C_6H_{13} CH₂-COCH₂CH=CH₂ which suggested that the silane remained attached to the carbon skeleton throughout the reaction.

S0022-3263(96)00233-2 CCC: \$12.00 © 1996 American Chemical Society

⁽⁹⁾ TiCl₄ was added at 0 °C instead of -78 °C, and the resulting mixture was stirred for 30 min at 25 °C. The reaction at -78 °C gave 3 (53%) along with the recovered starting acylsilane 1c (39%). (10) (a) Hosomi, A.; Sakurai, H. *Tetrahedron Lett.* 1976, 1295. (b)

 ^{(10) (}a) Hosomi, A.; Sakurai, H. *Tetrahedron Lett.* **1976**, 1295. (b) Hayashi, T.; Kabeta, K.; Hamachi, I.; Kumada, M. *Ibid.* **1983**, *24*, 2865.
 (11) The reaction of 1-propynyltrimethylsilane with **1c** provided

⁽¹¹⁾ The reaction of 1-propynyltrimethylsilane with **1c** provided 5-(*tert*-butyldimethylsilyl)-2-undecyn-4-one (**3g**) in 33% yield. (12) Treatment of α -iodoacylsilane (*n*-C₆H₁₃CHIC(O)SiMe₂-*t*-Bu)

⁽¹²⁾ Treatment of α -lodoacyisilane ($hC_{6}H_{13}CHC(0)SiMe_2-FBU$) with silver tetrafluoroborate in the presence of allyltrimethylsilane also provided **3a** in 67% yield. In this case, the use of iodide was critical for the successful reaction. The reaction of **1c** with AgBF₄ in the presence of allyltrimethylsilane resulted in complete recovery of starting material **1c**.

^{(13) (}a) Panek, J. S.; Yang, M. J. Am. Chem. Soc. 1991, 113, 9868.
(b) Panek, J. S.; Beresis, R. J. Org. Chem. 1993, 58, 809. (c) Panek, J. S.; Jain, N. F. Ibid. 1993, 58, 2345. (d) Danheiser, R. L.; Dixon, B. R.; Glenson, R. W. Ibid. 1992, 57, 6094. (e) Yamazaki, S.; Katoh, S.; Yamabe, S. Ibid. 1992, 57, 4.

silane on the carbonyl carbon affords β , γ -unsaturated ketone **3** which is apparently produced by migration of silyl group¹⁶ to adjacent carbon followed by allylation.

The intermediary acyl cation equivalent **4** has been expected to react with electron-rich aromatic compounds such as methoxybenzene or *m*-dimethoxybenzene via Friedel–Crafts type reaction. This was indeed the case, and an addition of these aromatic compounds instead of allylsilane gave the corresponding acylated products (Scheme 4). Trimethylsilyl group was lost under the reaction conditions and *tert*-butyldimethylsilyl group remained on the products as in the case of the reaction with allylsilane. Thiophene could be used as a trapping reagent of acyl cation to give the corresponding adduct in moderate yield (46%) upon treatment with **1a** and TiCl₄. The use of furan instead of methoxybenzene furnished only poor yield of Friedel–Crafts type adduct (<4%).

The loss of the trimethylsilyl and dimethylphenylsilyl groups during the reaction might be attributed to a facile transformation^{17,18} of the α -silyl ketone to the corresponding silyl enol ether under the reaction conditions, which then collapsed to β , γ -unsaturated ketone or heptyl 2,4-dimethoxyphenyl ketone upon aqueous workup. Thus, it was anticipated that the sequential treatment of 1a or **1b** with allyltrimethylsilane in the presence of TiCl₄ followed by carbonyl compounds would provide threecomponent coupling products. The representative results which realized this expectation are shown below (Scheme 5). For instance, an addition of acetaldehyde to the reaction mixture derived from 1a and allyltrimethylsilane gave aldol type product 7a in 70% yield, and therefore, α -chloroacylsilane **1a** or **1b** can be regarded as a synthon of $^{-}C^{-}C^{+}(=O)$.

Scheme 5

In summary, a simple procedure has been devised for the preparation of an α -silylacyl cation equivalent. Additionally, a convenient and efficient three component coupling reaction of α -chloroacylsilane, allyltrimethylsilane and carbonyl compound has been achieved which further enhances the synthetic utility of α -haloacylsilanes.

Experimental Section

Preparation of α -**Chloroacylsilanes.** 2-Chloro-1-(trimethylsilyl)-1-octanone (**1a**), 2-Chloro-1-(dimethylphenylsilyl)-1-octanone (**1b**), 2-chloro-1-(*tert*-butyldimethylsilyl)-1-octanone (**1c**), and 2-chloro-1-(*tert*-butyldimethylsilyl)-1-pentanone (**1d**) were prepared according to the reported procedure.⁴ 1-(Dimethylphenylsilyl)-1-octanone was produced following the literature.^{2a} The physical data are as follows.

1-(Dimethylphenylsilyl)-1-octanone: 1.2 g, 80% yield; Bp 113 °C (0.5 Torr); IR (neat) 2954, 2924, 2852, 1643, 1429, 1250, 1111 cm⁻¹; ¹H NMR (CDCl₃) δ 0.48 (s, 6H), 0.85 (t, J = 6.8 Hz, 3H), 1.06–1.34 (m, 8H), 1.43 (m, 2H), 2.55 (t, J = 7.4 Hz, 2H), 7.34–7.46 (m, 3H), 7.52–7.59 (m, 2H); ¹³C NMR (CDCl₃) δ –4.76, 14.02, 22.13, 22.53, 29.03, 29.12, 31.59, 48.84, 128.13, 129.84, 133.98, 134.63, 246.78. Found: C, 73.23; H, 10.14%. Calcd for C₁₆H₂₆OSi: C, 73.22; H, 9.98%.

^{(16) 1,2-}Silyl migration: (a) Bideau, F. L.; Gilloir, F.; Nilsson, Y.;
Anbert, C.; Malacria, M. *Tetrahedron Lett.* **1995**, *36*, 1641. (b) Knölker,
H-J.; Graf, R.; *Synlett* **1994**, 131. (c) Monti, H.; Audran, G.; Monti, J.P.; Leandri, G. *Synlett* **1994**, 403. (d) Knölker, H.-J.; Foitzik, N.;
Goesmann, H.; Graf, K. *Angew. Chem., Int. Ed. Engl.* **1993**, *32*, 1081.
(e) Sato, T.; Otera, J.; Nozaki, H. J. Org. Chem. **1990**, *55*, 6116.

⁽¹⁷⁾ β -Ketosilanes have been known to undergo a facile thermal rearrangement to silyl enol ethers. Brook, A. G. *Acc. Chem. Res.* **1974**, 7, 77. See also ref 7e and 7f.

⁽¹⁸⁾ Aldol reaction of β -ketosilane with aldehyde in the presence of a Lewis acid have been reported. Kuwajima, I.; Inoue, T.; Sato, T. *Tetrahedron Lett.* **1978**, 4887.

2-Chloro-1-(trimethylsilyl)-1-octanone (1a).^{3a} Diisobutylaluminum hydride (18.7 mL, 105 mmol) was added dropwise to a solution of 1-(trimethylsilyl)-1-octyne (17.3 g, 95 mmol) in ether (95 mL) at 25 °C under argon atmosphere. The mixture was heated at reflux for 3 h. The resulting solution was cooled to -15 °C (dry ice-ethylene glycol) and N-chlorosuccinimide (14.0 g, 105 mmol) was added portionwise. Exothermic reaction took place. After completion of the addition, the mixture was warmed to 25 °C and stirred for 30 min. Then the mixture was poured into ice-cold 1 M HCl. Extraction with hexane followed by purification by silica gel column (hexane) chromatography gave (E)-1-(trimethylsilyl)-1-chloro-1-octene (18.5 g, 85 mmol). *m*-Chloroperoxybenzoic acid (19.4 g, 80% purity, 90 mmol) was added to a solution of (E)-1-(trimethylsilyl)-1-chloro-1-octene (18.5 g) in dichloromethane (100 mL) at 25 °C, and the resulting mixture was stirred for 8 h. The mixture was poured into saturated NaHCO₃ and extracted with hexane (60 mL \times 3). Concentration of the dried combined organic layers followed by silica gel column chromatography afforded α-chloroepoxysilane (17.3 g, 74 mmol) in 78% overall yield from 1-(trimethylsilyl)-1-octyne. A catalytic amount of zinc chloride (3 g, 22 mmol) was added to a solution of α -chloroepoxysilane (17.3 g, 74 mmol) in ether (50 mL) at 0 °C and the mixture was stirred at 25 °C for 1 h. Extractive workup (EtOAc-H₂O) followed by purification by silica gel column chromatography provided the title compound (16.6 g, 71 mmol) in 96% yield.

2-Chloro-1-(dimethylphenylsilyl)-1-octanone (1b): 15.3 g, 53% overall yield; Bp 137 °C (0.5 Torr); IR (neat) 2952, 2926, 2856, 1652, 1466, 1429, 1251, 1111, 838, 820, 784, 734, 699, 646 cm⁻¹; ¹H NMR (CDCl₃) δ 0.58 (s, 3H), 0.59 (s, 3H), 0.85 (t, J = 6.9 Hz, 3H), 1.00–1.39 (m, 8H), 1.61 (m, 1H), 1.80 (m, 1H), 4.29 (dd, J = 5.4, 8.7 Hz, 1H), 7.36–7.48 (m, 3H), 7.56–7.62 (m, 2H); ¹³C NMR (CDCl₃) δ –3.66, –3.60, 13.95, 22.42, 25.77, 28.56, 31.41, 31.74, 68.28, 128.14, 130.07, 134.03, 134.18, 235.25. Found: C, 65.02; H, 8.82%. Calcd for C₁₆H₂₆OSiCl: C, 64.73; H, 8.49%.

2-Chloro-1-(*tert*-butyldimethylsilyl)-1-octanone (1c): 20 g, 65% overall yield; Bp 98 °C (0.5 Torr); IR (neat) 2952, 2926, 2856, 1652, 1465, 1251, 839, 824, 778 cm⁻¹; ¹H NMR (CDCl₃) δ 0.24 (s, 3H), 0.26 (s, 3H), 0.86 (t, J = 6.7 Hz, 3H), 0.93 (s, 9H), 1.17–1.51 (m, 8H), 1.67 (m, 1H), 1.87 (m, 1H), 4.31 (dd, J = 5.4, 8.5 Hz, 1H); ¹³C NMR (CDCl₃) δ –5.88, 14.00, 16.97, 22.49, 26.05, 26.46, 28.74, 31.26, 31.51, 67.12, 236.30. Found: C, 61.00; H, 10.82%. Calcd for Cl₄H₂₉OSiCl: C, 60.72; H, 10.56%.

2-Chloro-1-(*tert*-butyldimethylsilyl)-1-pentanone (1d): 15 g, 60% overall yield; Bp 45 °C (0.5 Torr); IR (neat) 2954, 2930, 2854, 1651, 1465, 1365, 1252, 839, 823, 811, 779, 679 cm⁻¹; ¹H NMR (CDCl₃) δ 0.26 (s, 3H), 0.28 (s, 3H), 0.939 (t, J = 7.4 Hz, 3H), 0.943 (s, 9H), 1.28–1.56 (m, 2H), 1.69 (m, 1H), 1.85 (m, 1H), 4.34 (dd, J = 5.3, 8.6 Hz, 1H); ¹³C NMR (CDCl₃) δ –5.90, –5.86, 13.51, 16.96, 19.36, 26.46, 33.23, 66.79, 236.26. Found: C, 56.29; H, 10.06%. Calcd for C₁₁H₂₃OSiCl: C, 56.26; H, 9.87%.

General Procedure for the Reaction of 1 and Allyltrimethylsilane in the Presence of TiCl₄. The reaction of 1a with allyltrimethylsilane is representative. Under an argon atmosphere, a dichloromethane solution of TiCl₄ (1.0 M, 2.0 mL, 2.0 mmol) was added dropwise to a solution of α -chloroacylsilane 1a (0.24 g, 1.0 mmol) and allyltrimethylsilane (0.16 mL, 1.0 mmol) in dichloromethane (5 mL) at -78 °C. After being stirred for 30 min at the same temperature, the mixture was poured into saturated aqueous NaCl. Extraction with EtOAc (20 mL imes 3) followed by purification by silica-gel column chromatography afforded 1-undecen-4-one (2, 165 mg) in 98% yield: Bp 110 C (13 Torr); IR (neat) 2954, 2924, 2852, 1718, 918 cm⁻¹; ¹H NMR (CDCl₃) δ 0.87 (t, J = 6.8 Hz, 3H), 1.12–1.47 (m, 8H), 1.57 (m, 2H), 2.42 (t, J = 7.5 Hz, 2H), 3.16 (d, J = 6.6 Hz, 2H), 5.13 (dd, J = 1.2, 17.1 Hz, 1H), 5.17 (dd, J = 1.2, 10.2 Hz, 1H), 5.92 (ddt, J = 10.2, 17.1, 6.6 Hz, 1H); ¹³C NMR (CDCl₃) δ 13.92, 22.48, 23.59, 28.95, 29.04, 31.56, 42.31, 47.65, 118.72, 130.84, 209.26. Found: C, 78.23; H, 12.09%. Calcd for C₁₁H₂₀O: C, 78.51; H, 11.98%

5-(*tert***-Butyldimethylsilyl)-1-undecen-4-one (3a):** 0.22 g, 78% yield; Bp 112 °C (0.5 Torr); IR (neat) 2954, 2926, 2856, 1693, 1466, 1252, 834, 823, 807, 771 cm⁻¹; ¹H NMR (CDCl₃) δ -0.04 (s, 3H), 0.03 (s, 3H), 0.85 (t, J = 6.8 Hz, 3H), 0.92 (s, 9H), 1.02–1.46 (m, 9H), 1.97 (m, 1H), 2.51 (dd, J = 2.1, 12.0 Hz, 1H), 3.05 (dd, J = 6.9, 16.2 Hz, 1H), 3.14 (dd, J = 6.9, 16.2, Hz, 1H), 5.09 (dd, J = 1.5, 17.1 Hz, 1H), 5.15 (dd, J = 1.5, 10.2 Hz, 1H), 5.91

(ddt, J = 10.2, 17.1, 6.9 Hz, 1H); ¹³C NMR (CDCl₃) δ -7.17, -5.83, 14.02, 17.82, 22.58, 26.81, 28.38, 29.16, 30.90, 31.64, 44.68, 49.89, 118.26, 131.23, 210.55. Found: C, 72.19; H, 12.42%. Calcd for C₁₇H₃₄OSi: C, 72.27; H, 12.13%.

5-(*tert*-Butyldimethylsilyl)-3-methyl-1-undecen-4-one (3b): 0.15 g, 52% yield; Bp 108 °C (0.5 Torr); IR (neat) 2952, 2926, 2854, 1694, 1466, 1257, 1135, 915, 839, 822, 769 cm⁻¹; ¹H NMR (CDCl₃) δ -0.05 (s, 3H), 0.02 (s, 3H), 0.85 (t, J = 6.9 Hz, 3H, major), 0.86 (t, J = 6.9 Hz, 3H, minor), 0.93 (s, 9H, minor), 0.94 (s, 9H, major), 1.08–1.43 (m, 12H, including, 1.12 (d, J = 6.6Hz, 3H, major), 1.08–1.43 (m, 12H, including, 1.12 (d, J = 6.6Hz, 3H, major), 1.18 (d, J = 7.2 Hz, 3H, minor)), 1.99 (m, 1H), 2.61 (dd, J = 1.8, 11.7 Hz, 1H, minor), 2.73 (dd, J = 1.8, 11.7 Hz, 1H, major), 3.10 (m, 1H), 5.00–5.23 (m, 2H), 5.59 (ddd, J =8.7, 9.9, 17.4 Hz, 1H, major), 6.02 (ddd, J = 8.1, 10.5, 17.1 Hz, minor); ¹³C NMR (CDCl₃) δ -7.24, -7.18, -5.99, -5.22, 14.04, 14.83, 17.59, 17.91, 22.61, 26.79, 26.90, 28.33, 28.57, 29.21, 29.31, 30.77, 31.15, 31.69, 42.96, 43.73, 52.28, 53.50, 115.33, 117.23, 137.90, 138.18, 212.08, 213.94. Found: C, 72.98; H, 12.09%. Calcd for C₁₈H₃₆OSi: C, 72.90; H, 12.23%.

5-(*tert*-Butyldimethylsilyl)-3-phenyl-1-undecen-4-one (3c): 0.18 g, 50% yield; Bp 150 °C (0.5 Torr); IR (neat) 2952, 2926, 2854, 1692, 1466, 1455, 1253, 1132, 1079, 914, 823, 806, 699 cm⁻¹; ¹H NMR (CDCl₃) δ –0.13 (s, 3H, minor), 0.02 (s, 3H, minor), 0.05 (s, 6H, major), {0.74-1.55 (m, 13H) including 0.77 (t, J = 7.2 Hz, 3H, major), 0.86 (t, J = 6.9 Hz, minor), 0.92 (s, 9H, minor), 0.96 (s, 9H, major)}, 1.93 (m, 1H), 2.56 (dd, J = 1.8, 11.7 Hz, 1H, major), 2.78 (ďd, J = 2.1, 11.7 Hz, 1H, minor), 4.19 (d, J = 7.8 Hz, 1H, major), 4.29 (d, J = 9.3 Hz, 1H, minor), 4.94– 5.25 (m, 2H), 6.02 (ddd, J = 9.3, 9.6, 16.8 Hz, 1H, minor), 6.40 (ddd, J = 7.8, 10.2, 17.1 Hz, major), 7.20–7.37 (m, 5H); ¹³C NMR $(CDCl_3) \delta - 7.17, -7.05, -5.22, 13.99, 14.05, 17.90, 17.95, 22.38,$ 22.60, 26.83, 26.86, 27.82, 28.60, 28.96, 29.23, 29.49, 30.98, 31.57, 31.67, 43.44, 43.80, 64.82, 65.16, 116.43, 117.82, 126.92, 127.31, 128.34, 128.61, 128.73, 128.79, 128.86, 136.96, 137.69, 209.42, 209.83. Found: C, 76.98; H, 10.65%. Calcd for C23H38OSi: C, 77.03; H, 10.68%.

5-(*tert*-Butyldimethylsilyl)-2-methyl-1-undecen-4-one (3d): 0.20 g, 66% yield; Bp 104 °C (0.5 Torr); IR (neat) 2952, 2926, 2854, 1691, 1466, 1252, 890, 833, 823, 808, 770 cm⁻¹; ¹H NMR (CDCl₃) δ -0.01 (s, 3H), 0.04 (s, 3H), 0.86 (t, J = 6.8 Hz, 3H), 0.93 (s, 9H), 0.99-1.43 (m, 9H), 1.76 (s, 3H), 1.96 (m, 1H), 2.59 (dd, J = 1.8, 11.7 Hz, 1H), 3.00 (d, J = 14.4 Hz, 1H), 3.09 (d, J= 14.4 Hz, 1H), 4.78 (s, 1H), 4.91 (s, 1H); ¹³C NMR (CDCl₃) δ -7.17, -5.67, 14.03, 17.88, 22.58, 22.72, 26.81, 28.29, 29.16, 30.73, 31.67, 43.97, 54.41, 114.71, 139.47, 210.10. Found: C, 72.64; H, 12.16%. Calcd for C₁₈H₃₆OSi: C, 72.90; H, 12.23%.

5-(*tert*-Butyldimethylsilyl)-3,3-dimethyl-1-undecen-4one (3e): 0.10 g, 33% yield; Bp 118 °C (0.5 Torr); IR (neat) 2954, 2926, 2854, 1683, 1466, 1254, 1137, 1067, 1006, 916, 841, 822, 810, 788, 769, 687 cm⁻¹; ¹H NMR (CDCl₃) δ –0.10 (s, 3H), 0.03 (s, 3H), 0.86 (t, J = 6.8 Hz, 3H), 0.92 (s, 9H), 1.16–1.49 (m, 15H, including 1.18 (s, 3H), 1.21 (s, 3H)), 1.90 (m, 1H), 2.90 (dd, J = 1.8, 11.7 Hz, 1H), 5.10–5.18 (m, 2H), 6.00 (dd, J = 10.5, 17.4 Hz, 1H); ¹³C NMR (CDCl₃) δ –6.91, -4.45, 14.05, 18.26, 22.60, 23.47, 24.40, 27.09, 29.34, 31.07, 31.43, 31.69, 38.06, 51.20, 113.81, 143.59, 216.72. Found: C, 73.29; H, 12.53%. Calcd for C₁₉H₃₈OSi: C, 73.48; H, 12.33%.

7-(*tert* **Butyldimethylsilyl)-1,3-tridecadien-6-one (3f):** 0.19 g, 63% yield; Bp 118 °C (0.5 Torr); IR (neat) 2952, 2926, 2854, 1693, 1466, 1252, 1087, 1003, 835, 824, 805, 770 cm⁻¹; ¹H NMR (CDCl₃) δ -0.04 (s, 3H), 0.03 (s, 3H), 0.85 (t, J = 6.9 Hz, 3H), 0.93 (s, 9H), 1.10–1.46 (m, 9H), 1.97 (m, 1H), 2.52 (dd, J = 2.1, 11.7 Hz, 1H), 3.08 (dd, J = 7.2, 16.5 Hz, 1H), 3.18 (dd, J = 7.2, 16.5 Hz, 1H), 5.04 (d, J = 9.9 Hz, 1H), 5.14 (d, J = 16.8 Hz, 1H), 5.79 (dt, J = 15.3, 7.2 Hz, 1H), 6.09 (dd, J = 10.2, 15.3 Hz, 1H), 6.34 (ddd, J = 9.9, 10.2, 16.8 Hz, 1H); ¹³C NMR (CDCl₃) δ -7.32, -5.93, 13.94, 17.72, 22.50, 26.71, 28.36, 29.06, 30.81, 31.58, 44.61, 48.61, 116.47, 126.74, 134.32, 136.73, 210.61. Found: C, 73.99; H, 11.83%. Calcd for C₁₉H₃₆OSi: C, 73.95; H, 11.76%.

5-(*tert*-Butyldimethylsilyl)-2-undecyn-4-one (3g): 92 mg, 33% yield; Bp 120 °C (0.5 Torr); IR (neat) 2952, 2926, 2854, 2216, 1651, 1467, 1252, 1167, 838, 825, 810, 770 cm⁻¹; ¹H NMR (CDCl₃) δ 0.06 (s, 3H), 0.07 (s, 3H), 0.87 (t, J = 6.6 Hz, 3H), 0.93 (s, 9H), 1.14–1.52 (m, 9H), 2.00 (s, 1H), 2.08 (m, 1H), 2.54 (dd, J = 1.8, 11.7 Hz, 1H); ¹³C NMR (CDCl₃) δ –6.82, –6.38, 3.95, 14.03, 17.96, 22.54, 26.75, 28.00, 29.05, 30.76, 31.58, 48.69, 81.30, 88.97, 190.68. Found: C, 72.53; H, 11.41%. Calcd for C₁₇H₃₂OSi: C, 72.79; H, 11.50%.

4-(Dimethylphenylsilyl)-1-undecen-4-ol: 0.26 g, 85% yield; Bp 127 °C (0.5 Torr); IR (neat) 2926, 2852, 1429, 1248, 1112, 914, 831, 812, 772, 734, 701, 648 cm⁻¹; ¹H NMR (CDCl₃) δ 0.38 (s, 3H), 0.39 (s, 3H), 0.88 (t, J = 6.8 Hz, 3H), 1.11 (bs, 1H), 1.15– 1.35 (m, 10H), 1.52 (m, 2H), 2.33 (d, J = 7.2 Hz, 2H), 5.03–5.12 (m, 2H), 5.79 (ddt, J = 10.2, 16.8, 7.2 Hz, 1H), 7.33–7.42 (m, 3H), 7.56–7.63 (m, 2H); ¹³C NMR (CDCl₃) δ –4.52, –4.45, 14.03, 22.58, 23.46, 29.12, 30.28, 31.74, 37.78, 41.58, 68.14, 118.44, 127.73, 129.18, 133.80, 134.59, 137.05. Found: C, 75.03; H, 10.72%. Calcd for C₁₉H₃₂OSi: C, 74.93; H, 10.59%.

1-(4-Methoxyphenyl)-1-pentanone (5a): 0.15 g, 77% yield; Bp 113 °C (0.5 Torr); IR (neat) 2956, 1679, 1602, 1577, 1510, 1460, 1311, 1259, 1213, 1171, 1031, 840 cm⁻¹; ¹H NMR (CDCl₃) δ 0.94 (t, J = 7.4 Hz, 3H), 1.40 (tq, J = 7.8, 7.4 Hz, 2H), 1.70 (tt, J = 7.5, 7.8 Hz, 2H), 2.91 (d, J = 7.5 Hz, 2H), 3.87 (s, 3H), 6.93 (d, J = 9.0 Hz, 2H), 7.94 (d, J = 9.0 Hz, 2H); ¹³C NMR (CDCl₃) δ 13.91, 22.50, 26.70, 37.99, 55.42, 113.64, 130.19, 130.32, 163.30, 199.30. Found: C, 74.84; H, 8.58%. Calcd for C₁₂H₁₆O₂: C, 74.97; H, 8.39%.

2-(*tert*-Butyldimethylsilyl)-1-(4-methoxyphenyl)-1-pentanone (6a): 0.20 g, 66% yield; Bp 145 °C (0.5 Torr); IR (neat) 2928, 2854, 1651, 1602, 1509, 1464, 1260, 1246, 1209, 1171, 835, 824 cm⁻¹; ¹H NMR (CDCl₃) δ -0.26 (s, 3H), 0.03 (s, 3H), 0.85 (t, J = 7.2 Hz, 3H), 0.90 (s, 9H), 1.10–1.43 (m, 2H), 1.53 (m, 1H), 2.21 (m, 1H), 3.37 (dd, J = 2.1, 11.7 Hz, 1H), 3.85 (s, 3H), 6.91 (d, J = 8.7 Hz, 2H), 7.89 (d, J = 8.7 Hz, 2H); ¹³C NMR (CDCl₃) δ -7.27, -5.83, 14.04, 18.12, 24.04, 27.02, 31.19, 38.15, 55.36, 113.54, 130.19, 132.81, 162.92, 202.25. Found: C, 70.60; H, 10.11%. Calcd for C₁₈H₃₀O₂Si: C, 70.53; H, 9.86%.

1-(2,4-Dimethoxyphenyl)-1-octanone (5b): 0.22 g, 84% yield; Bp 140 °C (0.5 Torr); IR (neat) 2926, 2852, 1665, 1602, 1576, 1465, 1293, 1262, 1212, 1163, 1030 cm⁻¹; ¹H NMR (CDCl₃) δ 0.87 (t, J = 6.8 Hz, 3H), 1.20–1.39 (m, 8H), 1.85 (tt, J = 7.5, 7.5 Hz, 2H), 2.91 (t, J = 7.5 Hz, 2H), 3.84 (s, 3H), 3.87 (s, 3H), 6.45 (d, J = 2.4 Hz, 1H), 6.51 (dd, J = 2.4, 8.4 Hz, 1H), 7.77 (d, J = 8.4 Hz, 1H); ¹³C NMR (CDCl₃) δ 13.94, 22.50, 24.50, 29.09, 29.35, 31.64, 43.57, 55.35, 55.41, 98.37, 104.98, 121.51, 132.64, 160.68, 164.25, 201.22. Found: C, 72.92; H, 9.24%. Calcd for C₁₆H₂₄O₃: C, 72.69; H, 9.15%.

1-(2,4-Dimethoxyphenyl)-2-(*tert***-butyldimethylsilyl)-1pentanone (6b):** 0.29 g, 87% yield; Bp 154 °C (0.5 Torr); IR (neat) 2954, 2928, 1644, 1602, 1465, 1255, 1212, 1162, 1135, 1028, 823 cm⁻¹; ¹H NMR (CDCl₃) δ –0.23 (s, 3H), –0.03 (s, 3H), 0.87 (s, 9H), 0.88 (t, J = 6.8 Hz, 3H), 1.16–1.53 (m, 3H), 2.23 (m, 1H), 3.80 (dd, J = 1.2, 9.6 Hz, 1H), 3.84 (s, 3H), 3.85 (s, 3H), 6.43 (d, J = 2.4 Hz, 1H), 6.50 (dd, J = 2.4, 8.7 Hz, 1H), 7.68 (d, J = 8.7 Hz, 1H); ¹³C NMR (CDCl₃) δ –7.13, –5.75, 14.10, 18.06, 23.82, 27.03, 31.22, 43.08, 55.27, 55.40, 98.54, 104.75, 124.00, 132.94, 159.86, 163.53, 203.25. Found: C, 67.74; H, 9.73%. Calcd for C₁₉H₃₂O₃Si: C, 67.81; H, 9.58%.

1-Thienyl-1-pentanone: 77 mg, 46% yield; Bp 122 °C (13 Torr); IR (neat) 2956, 2930, 2868, 1661, 1519, 1417, 1266, 1209, 856, 721 cm⁻¹; ¹H NMR (CDCl₃) δ 0.95 (t, J = 7.2 Hz, 3H), 1.41 (tq, J = 7.5, 7.2 Hz, 2H), 1.73 (tt, J = 7.5, 7.5 Hz, 2H), 2.90 (t, J = 7.5 Hz, 2H), 7.12 (m, 1H), 7.62 (m, 1H), 7.71 (m, 1H); ¹³C NMR (CDCl₃) δ 13.76, 22.35, 26.78, 39.08, 128.10, 131.73, 133.39, 144.64, 193.76. Found: C, 64.05; H, 7.15%. Calcd for C₉H₁₂-OS: C, 64.25; H, 7.19%.

General Procedure for Three-Component Coupling Reaction. The reaction of 1a, allyltrimethylsilane, and acetaldehyde was representative. TiCl₄ (2.0 mmol) was added to a dichloromethane solution of 1a (1.0 mmol) and allyltrimethylsilane (1.0 mmol) at -78 °C. After being stirred for 15 min, acetaldehyde (44 mg, 0.06 mL, 1.0 mmol) was added to the reaction mixture and the whole was stirred for another 25 min at -78 °C. The resulting mixture was poured into saturated aqueous NaCl. Extractive workup followed by purification by silica-gel column chromatography gave 5-(1-hydroxyethyl)-1undecen-4-one (7a, 149 mg) in 70% yield: Bp 158 °C (13 Torr); IR (neat) 3404, 2954, 2924, 2854, 1707, 1459, 1378, 1143, 1109, 918 cm⁻¹; ¹H NMR (CDCl₃) δ 0.87 (t, J = 6.6 Hz, 3H), 1.131.35 (m, 10H, including, 0.16 (d, J = 6.3 Hz, 3H, *erythro*) 0.20 (d, J = 6.6 Hz, 3H, *threo*), 1.48–1.76 (m, 3H), 2.25 (bs, 1H, *erythro*), 2.42 (bs, 1H, *threo*), 2.54–2.65 (m, 1H, mainly, 2.62, ddd, J = 4.5, 4.8, 9.2 Hz, *erythro*), 3.21 (dq, J = 6.9, 17.1 Hz, 1H), 3.29 (dd, J = 6.9, 17.1 Hz, 1H), 3.93 (m, 1H, *threo*), 3.96 (dq, J = 4.8, 6.3 Hz, 1H, *erythro*), 5.09–5.21 (m, 2H), 5.83–5.97 (m, 1H); ¹³C NMR (CDCl₃) δ 13.91, 20.47, 21.68, 22.46, 26.85, 27.16, 27.87, 29.10, 29.34, 29.45, 31.49, 49.06, 49.21, 57.32, 58.05, 67.89, 68.56, 119.04, 119.08, 130.24, 213.32. Found: C, 73.46; H, 11.44%. Calcd for C₁₃H₂₄O₂: C, 73.54; H, 11.39%.

erythro-5-(1-Hydroxy-1-phenylmethyl)-1-undecen-4one (7b): 0.16 g, 58% combined yield (*erythro* and *threo* isomers); Bp 153 °C (0.5 Torr); IR (neat) 3396, 2952, 2924, 2854, 1710, 1455, 1053, 918, 763, 701 cm⁻¹; ¹H NMR (CDCl₃) δ 0.85 (t, J =6.9 Hz, 3H), 1.05–1.33 (m, 8H), 1.57–1.83 (m, 2H), 2.67 (bs, 1H), 2.84–3.08 (m, 3H), 4.84 (d, J = 6.0 Hz, 1H), 4.98 (dd, J = 1.5, 17.1 Hz, 1H), 5.12 (dd, J = 1.5, 10.2 Hz, 1H), 5.43 (dddd, J =7.1, 7.1, 10.2, 17.1 Hz, 1H), 7.24–7.38 (m, 5H); ¹³C NMR (CDCl₃) δ 13.90, 22.42, 27.33, 27.65, 29.36, 31.43, 49.46, 58.62, 74.21, 119.12, 126.23, 127.82, 128.51, 129.93, 142.01, 212.94. Found: C, 78.83; H, 9.70%. Calcd for C₁₈H₂₆O₂: C, 78.79; H, 9.55%.

threo-5-(1-Hydroxy-1-phenylmethyl)-1-undecen-4-one (7b): Bp 153 °C (0.5 Torr); IR (neat) 3448, 2952, 2924, 2854, 1711, 1455, 916, 764, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 0.74 (t, J =6.8 Hz, 3H), 1.00–1.24 (m, 8H), 1.42–1.56 (m, 2H), 2.73 (bs, 1H), 2.85 (ddd, J = 4.8, 7.5, 9.1 Hz, 1H), 3.00 (m, 1H), 3.08 (m, 1H), 4.67 (d, J = 7.5 Hz, 1H), 4.95 (dd, J = 1.5, 17.1 Hz, 1H), 5.05 (dd, J = 1.5, 10.2 Hz, 1H), 5.75 (dddd, J = 6.9, 6.9, 10.2, 17.1 Hz, 1H), 7.15–7.29 (m, 5H); ¹³C NMR (CDCl₃) δ 13.85, 22.35, 27.09, 29.14, 29.39, 31.36, 49.80, 57.98, 75.76, 118.92, 126.28, 127.95, 128.58, 130.09, 142.61, 213.86. Found: C, 78.58; H, 9.35%. Calcd for C₁₈H₂₆O₂: C, 78.79; H, 9.55%.

5-(1-Hydroxy-1-methylethyl)-1-undecen-4-one (7c): 0.19 g, 83% yield; Bp 94 °C (0.5 Torr); IR (neat) 3436, 2954, 2926, 2854, 1703, 1467, 1378, 1152, 918 cm⁻¹; ¹H NMR (CDCl₃) δ 0.87 (t, J = 6.3 Hz, 3H), 1.13–1.36 (m, 14H, including 1.19 (s, 3H) and 1.21 (s, 3H)), 1.47–1.80 (m, 2H), 2.64 (dd, J = 3.3, 10.8 Hz, 1H), 2.69 (bs, 1H), 3.23 (dd, J = 6.9, 17.5 Hz, 1H), 5.33 (dd, J = 6.9, 17.5 Hz, 1H), 5.33 (dd, J = 3.0, 17.1 Hz, 1H), 5.00 (dd, J = 3.0, 10.2 Hz, 1H), 5.91 (dddd, J = 6.9, 6.9, 10.2, 17.1 Hz, 1H); ¹³C NMR (CDCl₃) δ 13.92, 22.47, 26.86, 28.26, 28.32, 29.49, 29.60, 31.49, 51.35, 59.96, 72.04, 119.05, 130.15, 215.59. Found: C, 74.16; H, 11.83%. Calcd for C₁₄H₂₆O₂: C, 74.29; H, 11.58%.

erythro-5-(1-Methoxyethyl)-1-undecen-4-one (7d): 0.14 g, 61% combined yield (*erythro* and *threo* isomers); R_f 0.50 (hex/AcOEt = 10/1); Bp 90 °C (0.5 Torr); IR (neat) 2924, 2854, 1712, 1459, 1379, 1143, 1116, 1096, 917 cm⁻¹; ¹H NMR (CDCl₃) δ 0.85 (t, J = 6.8 Hz, 3H), 1.04 (d, J = 6.3 Hz, 3H), 1.09–1.34 (m, 8H), 1.43 (m, 1H), 1.65 (m, 1H), 2.76 (ddd, J = 4.2, 6.3, 9.8 Hz, 1H), 3.17 (dd, J = 7.2, 17.1 Hz, 1H), 3.31 (dd, J = 7.2, 17.1 Hz, 1H), 3.32 (s, 3H), 3.39 (dq, J = 6.3, 6.3 Hz, 1H), 5.10 (dd, J = 1.5, 17.4 Hz, 1H), 5.15 (dd, J = 1.5, 10.5 Hz, 1H), 5.00 (ddt, J = 7.2, 5.2, 28.38, 29.35, 31.51, 49.53, 56.42, 78.06, 118.56, 130.76, 211.19. Found: C, 74.54; H, 11.79%. Calcd for C₁₄H₂₆O₂: C, 74.29; H, 11.58%.

threo-5-(1-Methoxyethyl)-1-undecen-4-one (7d): R_f 0.46 (hex/AcOEt = 10/1); Bp 90 °C (0.5 Torr); IR (neat) 2924, 2854, 2820, 1717, 1465, 1379, 1145, 1116, 1095, 992, 915 cm⁻¹; ¹H NMR (CDCl₃) δ 0.85 (t, J = 6.8 Hz, 3H), 1.08–1.39 (m, 12H, including 1.21 (d, J = 6.3 Hz, 3H)), 1.55 (m, 1H), 2.60 (ddd, J = 3.6, 8.8, 10.6 Hz, 1H), 3.16 (dd, J = 6.9, 17.4 Hz, 1H), 3.23 (s, 3H), 3.27 (dd, J = 6.9, 17.4 Hz, 1H), 3.41 (dq, J = 8.8, 6.3 Hz, 1H), 5.10 (dd, J = 1.5, 17.1 Hz, 1H), 5.16 (dd, J = 1.5, 10.5 Hz, 1H), 5.93 (ddt, J = 10.5, 17.1 Hz, 1H), 5.16 (dd, J = 1.5, 10.5 Hz, 1H), 5.93 (ddt, J = 10.5, 17.1, 6.9 Hz, 1H); ¹³C NMR (CDCl₃) δ 13.91, 16.46, 22.45, 27.34, 28.29, 29.37, 31.47, 49.30, 56.52, 58.05, 78.91, 118.39, 130.91, 212.20. Found: C, 74.30; H, 11.75%. Calcd for C₁₄H₂₆O₂: C, 74.29; H, 11.58%.

JO9602332